Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
HLA ; 103(1): e15293, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37947386

RESUMO

The SNP-HLA Reference Consortium (SHLARC), a component of the 18th International HLA and Immunogenetics Workshop, is aimed at collecting diverse and extensive human leukocyte antigen (HLA) data to create custom reference panels and enhance HLA imputation techniques. Genome-wide association studies (GWAS) have significantly contributed to identifying genetic associations with various diseases. The HLA genomic region has emerged as the top locus in GWAS, particularly in immune-related disorders. However, the limited information provided by single nucleotide polymorphisms (SNPs), the hallmark of GWAS, poses challenges, especially in the HLA region, where strong linkage disequilibrium (LD) spans several megabases. HLA imputation techniques have been developed using statistical inference in response to these challenges. These techniques enable the prediction of HLA alleles from genotyped GWAS SNPs. Here we present the SHLARC activities, a collaborative effort to create extensive, and multi-ethnic reference panels to enhance HLA imputation accuracy.


Assuntos
Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Humanos , Imunogenética , Alelos , Antígenos HLA/genética , Genótipo
2.
Gut ; 73(2): 325-337, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37788895

RESUMO

OBJECTIVE: Primary sclerosing cholangitis (PSC) is characterised by bile duct strictures and progressive liver disease, eventually requiring liver transplantation. Although the pathogenesis of PSC remains incompletely understood, strong associations with HLA-class II haplotypes have been described. As specific HLA-DP molecules can bind the activating NK-cell receptor NKp44, we investigated the role of HLA-DP/NKp44-interactions in PSC. DESIGN: Liver tissue, intrahepatic and peripheral blood lymphocytes of individuals with PSC and control individuals were characterised using flow cytometry, immunohistochemical and immunofluorescence analyses. HLA-DPA1 and HLA-DPB1 imputation and association analyses were performed in 3408 individuals with PSC and 34 213 controls. NK cell activation on NKp44/HLA-DP interactions was assessed in vitro using plate-bound HLA-DP molecules and HLA-DPB wildtype versus knock-out human cholangiocyte organoids. RESULTS: NKp44+NK cells were enriched in livers, and intrahepatic bile ducts of individuals with PSC showed higher expression of HLA-DP. HLA-DP haplotype analysis revealed a highly elevated PSC risk for HLA-DPA1*02:01~B1*01:01 (OR 1.99, p=6.7×10-50). Primary NKp44+NK cells exhibited significantly higher degranulation in response to plate-bound HLA-DPA1*02:01-DPB1*01:01 compared with control HLA-DP molecules, which were inhibited by anti-NKp44-blocking. Human cholangiocyte organoids expressing HLA-DPA1*02:01-DPB1*01:01 after IFN-γ-exposure demonstrated significantly increased binding to NKp44-Fc constructs compared with unstimulated controls. Importantly, HLA-DPA1*02:01-DPB1*01:01-expressing organoids increased degranulation of NKp44+NK cells compared with HLA-DPB1-KO organoids. CONCLUSION: Our studies identify a novel PSC risk haplotype HLA-DP A1*02:01~DPB1*01:01 and provide clinical and functional data implicating NKp44+NK cells that recognise HLA-DPA1*02:01-DPB1*01:01 expressed on cholangiocytes in PSC pathogenesis.


Assuntos
Colangite Esclerosante , Humanos , Haplótipos , Colangite Esclerosante/genética , Cadeias alfa de HLA-DP/genética , Células Matadoras Naturais
3.
Dig Liver Dis ; 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37977914

RESUMO

BACKGROUND: Intestinal involvement in Behçet's disease (BD) is associated with poor prognosis and is more prevalent in East Asian than in Mediterranean populations. Identifying the genetic causes of intestinal BD is important for understanding the pathogenesis and for appropriate treatment of BD patients. METHODS: We performed genome-wide association studies (GWAS) and imputation/replication genotyping of human leukocyte antigen (HLA) alleles for 1,689 Korean and Turkish patients with BD (including 379 patients with intestinal BD) and 2,327 healthy controls, followed by replication using 593 Japanese patients with BD (101 patients with intestinal BD) and 737 healthy controls. Stratified cross-phenotype analyses were performed for 1) overall BD, 2) intestinal BD, and 3) intestinal BD without association of overall BD. RESULTS: We identified three novel genome-wide significant susceptibility loci including NPHP4 (rs74566205; P=1.36 × 10-8), TYW1-AUTS2 (rs60021986; P=1.14 × 10-9), and SEMA6D (rs4143322; P=5.54 × 10-9) for overall BD, and a new association with HLA-B*46:01 for intestinal BD (P=1.67 × 10-8) but not for BD without intestinal involvement. HLA peptide binding analysis revealed that Mycobacterial peptides, have a stronger binding affinity to HLA-B*46:01 compared to the known risk allele HLA-B*51:01. CONCLUSIONS: HLA-B*46:01 is associated with the development of intestinal BD; NPHP4, TYW1-AUTS2, and SEMA6D are susceptibility loci for overall BD.

4.
FASEB J ; 37(11): e23220, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37801035

RESUMO

Patients with cystic fibrosis (CF) exhibit pronounced respiratory damage and were initially considered among those at highest risk for serious harm from SARS-CoV-2 infection. Numerous clinical studies have subsequently reported that individuals with CF in North America and Europe-while susceptible to severe COVID-19-are often spared from the highest levels of virus-associated mortality. To understand features that might influence COVID-19 among patients with cystic fibrosis, we studied relationships between SARS-CoV-2 and the gene responsible for CF (i.e., the cystic fibrosis transmembrane conductance regulator, CFTR). In contrast to previous reports, we found no association between CFTR carrier status (mutation heterozygosity) and more severe COVID-19 clinical outcomes. We did observe an unexpected trend toward higher mortality among control individuals compared with silent carriers of the common F508del CFTR variant-a finding that will require further study. We next performed experiments to test the influence of homozygous CFTR deficiency on viral propagation and showed that SARS-CoV-2 production in primary airway cells was not altered by the absence of functional CFTR using two independent protocols. On the contrary, experiments performed in vitro strongly indicated that virus proliferation depended on features of the mucosal fluid layer known to be disrupted by absent CFTR in patients with CF, including both low pH and increased viscosity. These results point to the acidic, viscous, and mucus-obstructed airways in patients with cystic fibrosis as unfavorable for the establishment of coronaviral infection. Our findings provide new and important information concerning relationships between the CF clinical phenotype and severity of COVID-19.


Assuntos
COVID-19 , Fibrose Cística , Humanos , Fibrose Cística/complicações , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Mutação , Gravidade do Paciente , SARS-CoV-2
5.
Gastroenterology ; 165(4): 946-962.e13, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37454979

RESUMO

BACKGROUND & AIMS: Ulcerative colitis (UC) is characterized by severe inflammation and destruction of the intestinal epithelium, and is associated with specific risk single nucleotide polymorphisms in HLA class II. Given the recently discovered interactions between subsets of HLA-DP molecules and the activating natural killer (NK) cell receptor NKp44, genetic associations of UC and HLA-DP haplotypes and their functional implications were investigated. METHODS: HLA-DP haplotype and UC risk association analyses were performed (UC: n = 13,927; control: n = 26,764). Expression levels of HLA-DP on intestinal epithelial cells (IECs) in individuals with and without UC were quantified. Human intestinal 3-dimensional (3D) organoid cocultures with human NK cells were used to determine functional consequences of interactions between HLA-DP and NKp44. RESULTS: These studies identified HLA-DPA1∗01:03-DPB1∗04:01 (HLA-DP401) as a risk haplotype and HLA-DPA1∗01:03-DPB1∗03:01 (HLA-DP301) as a protective haplotype for UC in European populations. HLA-DP expression was significantly higher on IECs of individuals with UC compared with controls. IECs in human intestinal 3D organoids derived from HLA-DP401pos individuals showed significantly stronger binding of NKp44 compared with HLA-DP301pos IECs. HLA-DP401pos IECs in organoids triggered increased degranulation and tumor necrosis factor production by NKp44+ NK cells in cocultures, resulting in enhanced epithelial cell death compared with HLA-DP301pos organoids. Blocking of HLA-DP401-NKp44 interactions (anti-NKp44) abrogated NK cell activity in cocultures. CONCLUSIONS: We identified an UC risk HLA-DP haplotype that engages NKp44 and activates NKp44+ NK cells, mediating damage to intestinal epithelial cells in an HLA-DP haplotype-dependent manner. The molecular interaction between NKp44 and HLA-DP401 in UC can be targeted by therapeutic interventions to reduce NKp44+ NK cell-mediated destruction of the intestinal epithelium in UC.


Assuntos
Colite Ulcerativa , Antígenos HLA-DP , Humanos , Antígenos HLA-DP/genética , Colite Ulcerativa/genética , Células Matadoras Naturais , Haplótipos , Células Epiteliais
6.
Eur J Epidemiol ; 38(8): 883-889, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37358671

RESUMO

Coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) may lead to life-threatening respiratory symptoms. Understanding the genetic basis of the prognosis of COVID-19 is important for risk profiling of potentially severe symptoms. Here, we conducted a genome-wide epistasis study of COVID-19 severity in 2243 patients with severe symptoms and 12,612 patients with no or mild symptoms from the UK Biobank, followed by a replication study in an independent Spanish cohort (1416 cases, 4382 controls). Our study highlighted 3 interactions with genome-wide significance in the discovery phase, nominally significant in the replication phase, and enhanced significance in the meta-analysis. For example, the lead interaction was found between rs9792388 upstream of PDGFRL and rs3025892 downstream of SNAP25, where the composite genotype of rs3025892 CT and rs9792388 CA/AA showed higher risk of severe disease than any other genotypes (P = 2.77 × 10-12, proportion of severe cases = 0.24 ~ 0.29 vs. 0.09 ~ 0.18, genotypic OR = 1.96 ~ 2.70). This interaction was replicated in the Spanish cohort (P = 0.002, proportion of severe cases = 0.30 ~ 0.36 vs. 0.14 ~ 0.25, genotypic OR = 1.45 ~ 2.37) and showed enhanced significance in the meta-analysis (P = 4.97 × 10-14). Notably, these interactions indicated a possible molecular mechanism by which SARS-CoV-2 affects the nervous system. The first exhaustive genome-wide screening for epistasis improved our understanding of genetic basis underlying the severity of COVID-19.


Assuntos
COVID-19 , Humanos , COVID-19/genética , SARS-CoV-2/genética , Epistasia Genética , Genótipo
7.
Brain ; 146(3): 977-990, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35348614

RESUMO

Autoimmune neurological syndromes (AINS) with autoantibodies against the 65 kDa isoform of the glutamic acid decarboxylase (GAD65) present with limbic encephalitis, including temporal lobe seizures or epilepsy, cerebellitis with ataxia, and stiff-person-syndrome or overlap forms. Anti-GAD65 autoantibodies are also detected in autoimmune diabetes mellitus, which has a strong genetic susceptibility conferred by human leukocyte antigen (HLA) and non-HLA genomic regions. We investigated the genetic predisposition in patients with anti-GAD65 AINS. We performed a genome-wide association study (GWAS) and an association analysis of the HLA region in a large German cohort of 1214 individuals. These included 167 patients with anti-GAD65 AINS, recruited by the German Network for Research on Autoimmune Encephalitis (GENERATE), and 1047 individuals without neurological or endocrine disease as population-based controls. Predictions of protein expression changes based on GWAS findings were further explored and validated in the CSF proteome of a virtually independent cohort of 10 patients with GAD65-AINS and 10 controls. Our GWAS identified 16 genome-wide significant (P < 5 × 10-8) loci for the susceptibility to anti-GAD65 AINS. The top variant, rs2535288 [P = 4.42 × 10-16, odds ratio (OR) = 0.26, 95% confidence interval (CI) = 0.187-0.358], localized to an intergenic segment in the middle of the HLA class I region. The great majority of variants in these loci (>90%) mapped to non-coding regions of the genome. Over 40% of the variants have known regulatory functions on the expression of 48 genes in disease relevant cells and tissues, mainly CD4+ T cells and the cerebral cortex. The annotation of epigenomic marks suggested specificity for neural and immune cells. A network analysis of the implicated protein-coding genes highlighted the role of protein kinase C beta (PRKCB) and identified an enrichment of numerous biological pathways participating in immunity and neural function. Analysis of the classical HLA alleles and haplotypes showed no genome-wide significant associations. The strongest associations were found for the DQA1*03:01-DQB1*03:02-DRB1*04:01HLA haplotype (P = 4.39 × 10-4, OR = 2.5, 95%CI = 1.499-4.157) and DRB1*04:01 allele (P = 8.3 × 10-5, OR = 2.4, 95%CI = 1.548-3.682) identified in our cohort. As predicted, the CSF proteome showed differential levels of five proteins (HLA-A/B, C4A, ATG4D and NEO1) of expression quantitative trait loci genes from our GWAS in the CSF proteome of anti-GAD65 AINS. These findings suggest a strong genetic predisposition with direct functional implications for immunity and neural function in anti-GAD65 AINS, mainly conferred by genomic regions outside the classical HLA alleles.


Assuntos
Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Predisposição Genética para Doença/genética , Proteoma/genética , Antígenos de Histocompatibilidade Classe II , Antígenos HLA , Haplótipos , Alelos , Autoanticorpos , Cadeias HLA-DRB1/genética
9.
Nat Commun ; 13(1): 6204, 2022 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-36261456

RESUMO

Despite the increasing knowledge about factors shaping the human microbiome, the host genetic factors that modulate the skin-microbiome interactions are still largely understudied. This contrasts with recent efforts to characterize host genes that influence the gut microbiota. Here, we investigated the effect of genetics on skin microbiota across three different skin microenvironments through meta-analyses of genome-wide association studies (GWAS) of two population-based German cohorts. We identified 23 genome-wide significant loci harboring 30 candidate genes involved in innate immune signaling, environmental sensing, cell differentiation, proliferation and fibroblast activity. However, no locus passed the strict threshold for study-wide significance (P < 6.3 × 10-10 for 80 features included in the analysis). Mendelian randomization (MR) analysis indicated the influence of staphylococci on eczema/dermatitis and suggested modulating effects of the microbiota on other skin diseases. Finally, transcriptional profiles of keratinocytes significantly changed after in vitro co-culturing with Staphylococcus epidermidis, chosen as a representative of skin commensals. Seven candidate genes from the GWAS were found overlapping with differential expression in the co-culturing experiments, warranting further research of the skin commensal and host genetic makeup interaction.


Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos , Estudo de Associação Genômica Ampla , Microbiota/genética , Pele , Imunidade Inata/genética , Microbioma Gastrointestinal/genética
10.
Hum Mol Genet ; 31(23): 3945-3966, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-35848942

RESUMO

Given the highly variable clinical phenotype of Coronavirus disease 2019 (COVID-19), a deeper analysis of the host genetic contribution to severe COVID-19 is important to improve our understanding of underlying disease mechanisms. Here, we describe an extended genome-wide association meta-analysis of a well-characterized cohort of 3255 COVID-19 patients with respiratory failure and 12 488 population controls from Italy, Spain, Norway and Germany/Austria, including stratified analyses based on age, sex and disease severity, as well as targeted analyses of chromosome Y haplotypes, the human leukocyte antigen region and the SARS-CoV-2 peptidome. By inversion imputation, we traced a reported association at 17q21.31 to a ~0.9-Mb inversion polymorphism that creates two highly differentiated haplotypes and characterized the potential effects of the inversion in detail. Our data, together with the 5th release of summary statistics from the COVID-19 Host Genetics Initiative including non-Caucasian individuals, also identified a new locus at 19q13.33, including NAPSA, a gene which is expressed primarily in alveolar cells responsible for gas exchange in the lung.


Assuntos
COVID-19 , Humanos , COVID-19/genética , SARS-CoV-2/genética , Estudo de Associação Genômica Ampla , Haplótipos , Polimorfismo Genético
11.
Kidney Int ; 102(3): 624-639, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35716955

RESUMO

Estimated glomerular filtration rate (eGFR) reflects kidney function. Progressive eGFR-decline can lead to kidney failure, necessitating dialysis or transplantation. Hundreds of loci from genome-wide association studies (GWAS) for eGFR help explain population cross section variability. Since the contribution of these or other loci to eGFR-decline remains largely unknown, we derived GWAS for annual eGFR-decline and meta-analyzed 62 longitudinal studies with eGFR assessed twice over time in all 343,339 individuals and in high-risk groups. We also explored different covariate adjustment. Twelve genome-wide significant independent variants for eGFR-decline unadjusted or adjusted for eGFR-baseline (11 novel, one known for this phenotype), including nine variants robustly associated across models were identified. All loci for eGFR-decline were known for cross-sectional eGFR and thus distinguished a subgroup of eGFR loci. Seven of the nine variants showed variant-by-age interaction on eGFR cross section (further about 350,000 individuals), which linked genetic associations for eGFR-decline with age-dependency of genetic cross-section associations. Clinically important were two to four-fold greater genetic effects on eGFR-decline in high-risk subgroups. Five variants associated also with chronic kidney disease progression mapped to genes with functional in-silico evidence (UMOD, SPATA7, GALNTL5, TPPP). An unfavorable versus favorable nine-variant genetic profile showed increased risk odds ratios of 1.35 for kidney failure (95% confidence intervals 1.03-1.77) and 1.27 for acute kidney injury (95% confidence intervals 1.08-1.50) in over 2000 cases each, with matched controls). Thus, we provide a large data resource, genetic loci, and prioritized genes for kidney function decline, which help inform drug development pipelines revealing important insights into the age-dependency of kidney function genetics.


Assuntos
N-Acetilgalactosaminiltransferases , Insuficiência Renal Crônica , Insuficiência Renal , Estudos Transversais , Loci Gênicos , Estudo de Associação Genômica Ampla , Taxa de Filtração Glomerular/genética , Humanos , Rim , Estudos Longitudinais , N-Acetilgalactosaminiltransferases/genética , Insuficiência Renal/genética
12.
Gut ; 71(11): 2194-2204, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35264446

RESUMO

OBJECTIVE: One of the current hypotheses to explain the proinflammatory immune response in IBD is a dysregulated T cell reaction to yet unknown intestinal antigens. As such, it may be possible to identify disease-associated T cell clonotypes by analysing the peripheral and intestinal T-cell receptor (TCR) repertoire of patients with IBD and controls. DESIGN: We performed bulk TCR repertoire profiling of both the TCR alpha and beta chains using high-throughput sequencing in peripheral blood samples of a total of 244 patients with IBD and healthy controls as well as from matched blood and intestinal tissue of 59 patients with IBD and disease controls. We further characterised specific T cell clonotypes via single-cell RNAseq. RESULTS: We identified a group of clonotypes, characterised by semi-invariant TCR alpha chains, to be significantly enriched in the blood of patients with Crohn's disease (CD) and particularly expanded in the CD8+ T cell population. Single-cell RNAseq data showed an innate-like phenotype of these cells, with a comparable gene expression to unconventional T cells such as mucosal associated invariant T and natural killer T (NKT) cells, but with distinct TCRs. CONCLUSIONS: We identified and characterised a subpopulation of unconventional Crohn-associated invariant T (CAIT) cells. Multiple evidence suggests these cells to be part of the NKT type II population. The potential implications of this population for CD or a subset thereof remain to be elucidated, and the immunophenotype and antigen reactivity of CAIT cells need further investigations in future studies.


Assuntos
Doença de Crohn , Células T Matadoras Naturais , Linfócitos T CD8-Positivos , Doença de Crohn/genética , Humanos , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos de Linfócitos T alfa-beta/genética
13.
Cell Rep ; 38(10): 110503, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35235832

RESUMO

Natural killer (NK) cells are innate immune cells that contribute to host defense against virus infections. NK cells respond to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in vitro and are activated in patients with acute coronavirus disease 2019 (COVID-19). However, by which mechanisms NK cells detect SARS-CoV-2-infected cells remains largely unknown. Here, we show that the Non-structural protein 13 of SARS-CoV-2 encodes for a peptide that is presented by human leukocyte antigen E (HLA-E). In contrast with self-peptides, the viral peptide prevents binding of HLA-E to the inhibitory receptor NKG2A, thereby rendering target cells susceptible to NK cell attack. In line with these observations, NKG2A-expressing NK cells are particularly activated in patients with COVID-19 and proficiently limit SARS-CoV-2 replication in infected lung epithelial cells in vitro. Thus, these data suggest that a viral peptide presented by HLA-E abrogates inhibition of NKG2A+ NK cells, resulting in missing self-recognition.


Assuntos
COVID-19 , Antígenos de Histocompatibilidade Classe I , Células Matadoras Naturais , Metiltransferases , Subfamília C de Receptores Semelhantes a Lectina de Células NK , RNA Helicases , SARS-CoV-2 , Proteínas não Estruturais Virais , COVID-19/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Células Matadoras Naturais/imunologia , Metiltransferases/imunologia , Subfamília C de Receptores Semelhantes a Lectina de Células NK/imunologia , Subfamília C de Receptores Semelhantes a Lectina de Células NK/metabolismo , Peptídeos/metabolismo , RNA Helicases/imunologia , Proteínas não Estruturais Virais/imunologia
14.
J Crohns Colitis ; 16(7): 1097-1109, 2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35022690

RESUMO

BACKGROUND AND AIMS: Inflammatory bowel disease [IBD] is a chronic relapsing disorder of the gastrointestinal tract, which generally manifests as Crohn's disease [CD] or ulcerative colitis [UC]. These subtypes are heterogeneous in terms of disease location and histological features, while sharing common clinical presentation, genetic associations and, thus, common immune regulatory pathways. METHODS: Using miRNA and mRNA coupled transcriptome profiling and systems biology approaches, we report a comprehensive analysis of blood transcriptomes from treatment-naïve [n = 110] and treatment-exposed [n = 177] IBD patients as well as symptomatic [n = 65] and healthy controls [n = 95]. RESULTS: Broadly, the peripheral blood transcriptomes of CD and UC patients were similar. However, there was an extensive gene deregulation in the blood of IBD patients, while only a slight deregulation in symptomatic controls, when compared with healthy controls. The deregulated mRNAs and miRNAs are mainly involved in the innate immunity and are especially enriched in neutrophil activation-related pathways. Oxidative phosphorylation and neutrophil activation-related modules were found to be differentially co-expressed among treatment-naïve IBD as compared to healthy controls. In the deregulated neutrophil activation-related co-expression module, IL1B was identified as the central gene. Levels of co-expression among IL1B and chemosensing receptor [CXCR1/2 and FPR1/2] genes were reduced in the blood of IBD patients when compared with healthy controls. CONCLUSIONS: Immune dysregulation seen in peripheral blood transcriptomes of treatment-naïve IBD patients is mainly driven by neutrophil activation.


Assuntos
Colite Ulcerativa , Doença de Crohn , Doenças Inflamatórias Intestinais , MicroRNAs , Humanos , Doenças Inflamatórias Intestinais/metabolismo , MicroRNAs/genética , Ativação de Neutrófilo/genética , RNA Mensageiro/genética , Transcriptoma
15.
HGG Adv ; 3(1)2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-34927100

RESUMO

Because transethnic analysis may facilitate prioritization of causal genetic variants, we performed a genomewide association study (GWAS) of psoriasis in South Asians (SAS), consisting of 2,590 cases and 1,720 controls. Comparison with our existing European-origin (EUR) GWAS showed that effect sizes of known psoriasis signals were highly correlated in SAS and EUR (Spearman ρ = 0.78; p < 2 × 10-14). Transethnic meta-analysis identified two non-MHC psoriasis loci (1p36.22 and 1q24.2) not previously identified in EUR, which may have regulatory roles. For these two loci, the transethnic GWAS provided higher genetic resolution and reduced the number of potential causal variants compared to using the EUR sample alone. We then explored multiple strategies to develop reference panels for accurately imputing MHC genotypes in both SAS and EUR populations and conducted a fine-mapping of MHC psoriasis associations in SAS and the largest such effort for EUR. HLA-C*06 was the top-ranking MHC locus in both populations but was even more prominent in SAS based on odds ratio, disease liability, model fit and predictive power. Transethnic modeling also substantially boosted the probability that the HLA-C*06 protein variant is causal. Secondary MHC signals included coding variants of HLA-C and HLA-B, but also potential regulatory variants of these two genes as well as HLA-A and several HLA class II genes, with effects on both chromatin accessibility and gene expression. This study highlights the shared genetic basis of psoriasis in SAS and EUR populations and the value of transethnic meta-analysis for discovery and fine-mapping of susceptibility loci.

16.
J Pers Med ; 11(11)2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34834519

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the etiologic agent of the coronavirus disease 2019 (COVID-19) pandemic. Besides virus intrinsic characteristics, the host genetic makeup is predicted to account for the extreme clinical heterogeneity of the disease, which is characterized, among other manifestations, by a derangement of hemostasis associated with thromboembolic events. To date, large-scale studies confirmed that genetic predisposition plays a role in COVID-19 severity, pinpointing several susceptibility genes, often characterized by immunologic functions. With these premises, we performed an association study of common variants in 32 hemostatic genes with COVID-19 severity. We investigated 49,845 single-nucleotide polymorphism in a cohort of 332 Italian severe COVID-19 patients and 1668 controls from the general population. The study was conducted engaging a class of students attending the second year of the MEDTEC school (a six-year program, held in collaboration between Humanitas University and the Politecnico of Milan, allowing students to gain an MD in Medicine and a Bachelor's Degree in Biomedical Engineering). Thanks to their willingness to participate in the fight against the pandemic, we evidenced several suggestive hits (p < 0.001), involving the PROC, MTHFR, MTR, ADAMTS13, and THBS2 genes (top signal in PROC: chr2:127192625:G:A, OR = 2.23, 95%CI = 1.50-3.34, p = 8.77 × 10-5). The top signals in PROC, MTHFR, MTR, ADAMTS13 were instrumental for the construction of a polygenic risk score, whose distribution was significantly different between cases and controls (p = 1.62 × 10-8 for difference in median levels). Finally, a meta-analysis performed using data from the Regeneron database confirmed the contribution of the MTHFR variant chr1:11753033:G:A to the predisposition to severe COVID-19 (pooled OR = 1.21, 95%CI = 1.09-1.33, p = 4.34 × 10-14 in the weighted analysis).

17.
J Clin Invest ; 131(23)2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34597274

RESUMO

BackgroundThere is considerable variability in COVID-19 outcomes among younger adults, and some of this variation may be due to genetic predisposition.MethodsWe combined individual level data from 13,888 COVID-19 patients (n = 7185 hospitalized) from 17 cohorts in 9 countries to assess the association of the major common COVID-19 genetic risk factor (chromosome 3 locus tagged by rs10490770) with mortality, COVID-19-related complications, and laboratory values. We next performed metaanalyses using FinnGen and the Columbia University COVID-19 Biobank.ResultsWe found that rs10490770 risk allele carriers experienced an increased risk of all-cause mortality (HR, 1.4; 95% CI, 1.2-1.7). Risk allele carriers had increased odds of several COVID-19 complications: severe respiratory failure (OR, 2.1; 95% CI, 1.6-2.6), venous thromboembolism (OR, 1.7; 95% CI, 1.2-2.4), and hepatic injury (OR, 1.5; 95% CI, 1.2-2.0). Risk allele carriers age 60 years and younger had higher odds of death or severe respiratory failure (OR, 2.7; 95% CI, 1.8-3.9) compared with those of more than 60 years (OR, 1.5; 95% CI, 1.2-1.8; interaction, P = 0.038). Among individuals 60 years and younger who died or experienced severe respiratory failure, 32.3% were risk-variant carriers compared with 13.9% of those not experiencing these outcomes. This risk variant improved the prediction of death or severe respiratory failure similarly to, or better than, most established clinical risk factors.ConclusionsThe major common COVID-19 genetic risk factor is associated with increased risks of morbidity and mortality, which are more pronounced among individuals 60 years or younger. The effect was similar in magnitude and more common than most established clinical risk factors, suggesting potential implications for future clinical risk management.


Assuntos
Alelos , COVID-19 , Cromossomos Humanos Par 3/genética , Frequência do Gene , Loci Gênicos , Polimorfismo Genético , SARS-CoV-2 , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , COVID-19/genética , COVID-19/mortalidade , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Gravidade do Paciente , Fatores de Risco
18.
BMC Bioinformatics ; 22(1): 405, 2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34404349

RESUMO

BACKGROUND: The human leukocyte antigen (HLA) proteins play a fundamental role in the adaptive immune system as they present peptides to T cells. Mass-spectrometry-based immunopeptidomics is a promising and powerful tool for characterizing the immunopeptidomic landscape of HLA proteins, that is the peptides presented on HLA proteins. Despite the growing interest in the technology, and the recent rise of immunopeptidomics-specific identification pipelines, there is still a gap in data-analysis and software tools that are specialized in analyzing and visualizing immunopeptidomics data. RESULTS: We present the IPTK library which is an open-source Python-based library for analyzing, visualizing, comparing, and integrating different omics layers with the identified peptides for an in-depth characterization of the immunopeptidome. Using different datasets, we illustrate the ability of the library to enrich the result of the identified peptidomes. Also, we demonstrate the utility of the library in developing other software and tools by developing an easy-to-use dashboard that can be used for the interactive analysis of the results. CONCLUSION: IPTK provides a modular and extendable framework for analyzing and integrating immunopeptidomes with different omics layers. The library is deployed into PyPI at https://pypi.org/project/IPTKL/ and into Bioconda at https://anaconda.org/bioconda/iptkl , while the source code of the library and the dashboard, along with the online tutorials are available at https://github.com/ikmb/iptoolkit .


Assuntos
Análise de Dados , Software , Antígenos de Histocompatibilidade Classe I , Humanos , Espectrometria de Massas , Peptídeos
19.
Gut ; 2021 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-33888516

RESUMO

OBJECTIVE: Haemorrhoidal disease (HEM) affects a large and silently suffering fraction of the population but its aetiology, including suspected genetic predisposition, is poorly understood. We report the first genome-wide association study (GWAS) meta-analysis to identify genetic risk factors for HEM to date. DESIGN: We conducted a GWAS meta-analysis of 218 920 patients with HEM and 725 213 controls of European ancestry. Using GWAS summary statistics, we performed multiple genetic correlation analyses between HEM and other traits as well as calculated HEM polygenic risk scores (PRS) and evaluated their translational potential in independent datasets. Using functional annotation of GWAS results, we identified HEM candidate genes, which differential expression and coexpression in HEM tissues were evaluated employing RNA-seq analyses. The localisation of expressed proteins at selected loci was investigated by immunohistochemistry. RESULTS: We demonstrate modest heritability and genetic correlation of HEM with several other diseases from the GI, neuroaffective and cardiovascular domains. HEM PRS validated in 180 435 individuals from independent datasets allowed the identification of those at risk and correlated with younger age of onset and recurrent surgery. We identified 102 independent HEM risk loci harbouring genes whose expression is enriched in blood vessels and GI tissues, and in pathways associated with smooth muscles, epithelial and endothelial development and morphogenesis. Network transcriptomic analyses highlighted HEM gene coexpression modules that are relevant to the development and integrity of the musculoskeletal and epidermal systems, and the organisation of the extracellular matrix. CONCLUSION: HEM has a genetic component that predisposes to smooth muscle, epithelial and connective tissue dysfunction.

20.
medRxiv ; 2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33758887

RESUMO

BACKGROUND: There is considerable variability in COVID-19 outcomes amongst younger adults-and some of this variation may be due to genetic predisposition. We characterized the clinical implications of the major genetic risk factor for COVID-19 severity, and its age-dependent effect, using individual-level data in a large international multi-centre consortium. METHOD: The major common COVID-19 genetic risk factor is a chromosome 3 locus, tagged by the marker rs10490770. We combined individual level data for 13,424 COVID-19 positive patients (N=6,689 hospitalized) from 17 cohorts in nine countries to assess the association of this genetic marker with mortality, COVID-19-related complications and laboratory values. We next examined if the magnitude of these associations varied by age and were independent from known clinical COVID-19 risk factors. FINDINGS: We found that rs10490770 risk allele carriers experienced an increased risk of all-cause mortality (hazard ratio [HR] 1·4, 95% confidence interval [CI] 1·2-1·6) and COVID-19 related mortality (HR 1·5, 95%CI 1·3-1·8). Risk allele carriers had increased odds of several COVID-19 complications: severe respiratory failure (odds ratio [OR] 2·0, 95%CI 1·6-2·6), venous thromboembolism (OR 1·7, 95%CI 1·2-2·4), and hepatic injury (OR 1·6, 95%CI 1·2-2·0). Risk allele carriers ≤ 60 years had higher odds of death or severe respiratory failure (OR 2·6, 95%CI 1·8-3·9) compared to those > 60 years OR 1·5 (95%CI 1·3-1·9, interaction p-value=0·04). Amongst individuals ≤ 60 years who died or experienced severe respiratory COVID-19 outcome, we found that 31·8% (95%CI 27·6-36·2) were risk variant carriers, compared to 13·9% (95%CI 12·6-15·2%) of those not experiencing these outcomes. Prediction of death or severe respiratory failure among those ≤ 60 years improved when including the risk allele (AUC 0·82 vs 0·84, p=0·016) and the prediction ability of rs10490770 risk allele was similar to, or better than, most established clinical risk factors. INTERPRETATION: The major common COVID-19 risk locus on chromosome 3 is associated with increased risks of morbidity and mortality-and these are more pronounced amongst individuals ≤ 60 years. The effect on COVID-19 severity was similar to, or larger than most established risk factors, suggesting potential implications for clinical risk management. FUNDING: Funding was obtained by each of the participating cohorts individually.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...